[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 6505

Unique Paper Code : 32341302

Name of the Paper : Operating Systems

Name of the Course : B.Sc. (H) Computer Science

Semester : III

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Q. 1 is compulsory.
- 3. Attempt any 4 questions out of the questions from Q. 2 to Q. 6.
- 4. Parts of a question must be answered together.
- 1. (a) Give one word answers for the following: (0.5×6)
 - (i) the mode in which operating system executes
 - (ii) A software generated interrupt
 - (iii) the path name that begins at the root and follows a path down to the specified file

- (iv) excessive number of page faults that results in degradation of the system performance
- (v) this type of file allocation allows only sequential access of the file
- (vi) a way of interprocess communication
- (b) Consider the following code segment:

int
$$a = 10$$
, $p = fork()$;

if (p == 0)

a++:

else {

wait(NULL);

a--;

cout << a << endl;

- (i) What will be the output of the code segment? (1)
- (ii) What are the possible outputs if wait() statement is removed and why?

(1)

(c) What is Processor Affinity?

- (d) Differentiate between the following: (3×2)
 - (i) Free space management using grouping and counting
 - (ii) Data parallelism and Task parallelism in threads
 - (iii) Long term scheduler and Short term scheduler
- (e) What is the difference between the following two (2)

Case 1: renaming a file

Case 2: copying a file and deleting the original file

(f) Consider the following segment table:

0 200 Congth 1 1200	0 200 Length	Segment		
1 1200 600	1 1200 20 2	regiment	Base	Length
1200	1 1200 20	0	200	
	2	1	1200	

What are the physical addresses for the following logical

(i) 1,30 (ii) 2,100

(g) If the total number of frames in main memory is 60 and (2)there are 4 processes in the system with the demand as

30, 10, 100 and 60 frames, respectively. What will be the number of frames allocated using the following allocation strategies?

4

(i) equal allocation

(1)

- (ii) proportional allocation
- (h) What is busy waiting in semaphores? How can it be removed? (3)
- (i) What is the main advantage of the layered approach to system design? What are the disadvantages of using the layered approach?
- (j) Why command interpreter is usually placed separate (2) from the kernel?
- (k) What are real time embedded systems?

Cu

- (1) How can timer be used to protect CPU?
- (m) Compare indexed and linked allocation schemes.
- 2. (a) Consider the following set of processes, with the lengtl of CPU burst time given in milliseconds:

Process	Arrival Time	Burst Time	Priority
P_1	0	5	2
P_2	2	3	1 (Highest)
P ₃	5	6	3
P_4	6	2	4

- (i) Draw Gantt chart for Shortest Job First algorithm and calculate turnaround time for every process.
- (ii) Draw Gantt chart for Priority based (preemptive) algorithm and calculate waiting time for every process. (6)
- (b) Suppose there is a system with 128KB of memory with no memory initially allocated. Given the following sequence of requests by the processes, show the memory layout at intermediate stages for best-fit allocation algorithm.

Process Number	Nature of Request	Amount of memory requested (in KB)
P0	Allocation	20
P1	Allocation	
P2	Allocation	15
Р3	Allocation	10
P0	Deallocation	25
P2	Deallocation	
P4	Allocation	
P5	Allocation	8
	Tinocation	10

(

(a) A system has 3 processes P1, P2 and P3, and 2 3. resources R1, R2 and R3. There are 2 instances each of R1 and R2, and one instance of R3. Given the edge set E = $\{R1 \rightarrow P1, R2 \rightarrow P2, P1 \rightarrow R3, R1 \rightarrow P2\}$ $P3 \rightarrow R1, R2 \rightarrow P3, R3 \rightarrow P3$.

6

(i) Draw the resource allocation graph.

(ii) Is the system in a deadlock? If the answer i. yes, then mention the processes in the deadloc else identify the sequence in which the processe execute.

(b) What is file-or ... 1? When does its value becom zero?

(c) Explain any three challenges in programming fo multicore systems.

(a) Consider a file system on a disk that has both logic and physical in and physical block sizes of 1-KB. If we are currentle at logical block at logical block 15 and want to access logical block how many -1 how many physical blocks must be read from the dis for the following access methods and why?

(i) sequential

(ii) direct

(b) Consider the following page reference string

0 3 1 4 7 6 2 7 6 2 7 1 4 7 3 2 1 2 1

How many page faults would occur with FCFS and optimal page replacement algorithms assuming three frames? All frames are initially empty. (6)

- (a) Consider a logical address space of 128 pages with 2-KB frame size mapped onto a physical memory of 512 KB
 - (i) How many bits are there in the logical and physical addresses? (2)
 - (ii) How what is the breakup of offset and page number in the logical address? (2)
 - (iii) What is the maximum number of entries in the conventional page table and in the inverted page table? (2)

(b) What is a Process Control Block? Explain any of its four components. (4)

(a) Suppose a disk drive has 200 cylinders numbered from 0 to 199. The request for 62 is being serviced and is moving towards track 99 and the disk request quel contains read/write requests for the sectors on track 184, 55, 103, 96 and 197 respectively. What is the tot number of head movements needed to satisfy requests in the queue using.

- (i) FCFS
- (ii) LOOK

(b) What is the critical section problem? What are the thrt! requirements for a solution to the critical section problem?